A preliminary study on improving the recognition of esophageal speech using a hybrid system based on statistical voice conversion

نویسندگان

  • Othman Lachhab
  • Joseph Di Martino
  • Elhassane Ibn Elhaj
  • Ahmed Hammouch
چکیده

In this paper, we propose a hybrid system based on a modified statistical GMM voice conversion algorithm for improving the recognition of esophageal speech. This hybrid system aims to compensate for the distorted information present in the esophageal acoustic features by using a voice conversion method. The esophageal speech is converted into a "target" laryngeal speech using an iterative statistical estimation of a transformation function. We did not apply a speech synthesizer for reconstructing the converted speech signal, given that the converted Mel cepstral vectors are used directly as input of our speech recognition system. Furthermore the feature vectors are linearly transformed by the HLDA (heteroscedastic linear discriminant analysis) method to reduce their size in a smaller space having good discriminative properties. The experimental results demonstrate that our proposed system provides an improvement of the phone recognition accuracy with an absolute increase of 3.40 % when compared with the phone recognition accuracy obtained with neither HLDA nor voice conversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Comparing the Voice Handicap Index Scores in Groups with Structural and Functional Voice Disorders

Objective: The effects of voice disorders vary from person to person. Occupation, work environment, life, and family reaction are variables that affect one’s perception of his/her own as an impaired voice. Voice Handicap Index (VHI) has not yet been used to compare the degree of voice disorders. Assuming that the quality of life may be different under a variety of voice disorders and that diffe...

متن کامل

Esophageal Speech Enhancement Based on Statistical Voice Conversion with Gaussian Mixture Models

This paper presents a novel method of enhancing esophageal speech using statistical voice conversion. Esophageal speech is one of the alternative speaking methods for laryngectomees. Although it doesn’t require any external devices, generated voices usually sound unnatural compared with normal speech. To improve the intelligibility and naturalness of esophageal speech, we propose a voice conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015